| Chemistry 7: Hydrocarbons | | | | | | | Cool | (25°C) | | | | | |---|---|---|---|---------------------------------|-------------|--------------------|---|---|--|----------------------------------|---|--| | Section 1: Key terms | | | | | | | 0001 | (20 0) | _ Refinery gases | Bottled | Small molecules:
• low boiling point | | | 1 Crude oil | A mixture of hydrocarbons formed over millions of years from dead plankton subjected to pressure. | | | | | | | | | gas | very volatile | | | 2 Hydrocarbon | A molecule of | containing | hydrogen and carbon | atoms only . | | | | | | | flows easily ignites easily | | | 3 Alkane | A hydrocarbon containing only single bonds . Follows the formula C_nH_{2n+2} . | | | | | | | | Gasoline (Petrol) | Fuel for | | | | 4 Fractional distillation | The method of separating hydrocarbons based on their boiling point. | | | | | | U | | | cars | | | | 5 Intermolecular force | Weak forces of attraction that exist between molecules. | | | | | | | | | | | | | 6 Boiling point | The temperature at which a liquid turns into a gas . | | | | | | | | | | | | | 7 Viscosity | The ability of a substance to flow . | | | | | | | | Naphtha | Making | | | | 8 Flammability | The ability of a substance to burn or ignite . | | | | | | | | _ | chemicals | | | | 10 Combustion | A reaction between a fuel and oxygen that produces heat. | | | | | | _ | | | | | | | 11 Complete combustion | Combustion in adequate oxygen . Complete combustion of a hydrocarbon will produce carbon dioxide and water . | | | | | | | | Kerosene | Aircraft | | | | 12 Incomplete combustion | | ombustion in inadequate oxygen . Incomplete combustion of a hydrocarbon produces water and arbon monoxide or carbon particulates . | | | | | | | _ | fuel | | | | 13 Alkene | | hydrocarbon containing at least one double bond . If they contain one double bond only they follow the formula C_nH_{2n} . Used to make polymers . | | | | | - | 7- | Diesel Oil | Fuel for cars,
lorries, buses | | | | 14 Bromine water | A chemical t | chemical that is brown/ orange in colour. If added to an alkene it reacts and changes to colourless . | | | | | | | | | | | | 15 Cracking | | | | | | Heated
crude oi | | ~~ <u></u> | Fuel Oil | Fuel for ships, power stations | | | | 16 Catalyst | A chemical that speeds up the rate of reaction without being used itself. | | | | | | | | | | Large molecules: | | | 17 Covalent bond | A strong bond that exists between non-metal atoms. | | | | | | | | Danishus | | high boiling point not very volatile | | | 18 Fraction | A fraction contains similar length hydrocarbons with a small range of boiling points. | | | | | | | | Residue | Bitumen for roads and roofs | does not flow easily | | | Section 2: Alkanes | | | | | | | Hot (| 350°C) | | Toads and Tools | does not ignite easily | | | mothana H | | 10 | Section 3: Fractional Distillation | | | | | | | | | | | methane 'i'
H-C-h | 4 | 23 | 23 The crude oil is heated to 400°C. | | | H | | | | | | | | CH ₄ I | | 24 | Most fractions evaporate and become vapours . The residue doesn't boil and flows to the bottom of the column. | | | | | | | | | | | ethane H | Н | 25 | 5 Hot vapours rise up th | e column and cool down . | | R | | | | | | | | | | 20 26 | When the vapours cool to their boiling point they condense and flow out of the column. | | | | C ₁₅ H ₃₂ | | 2C ₂ H ₄ + C ₃ H ₆ | + C ₈ H ₁₈ | | | | | Ĥ | 27 | 27 Those with lower boiling points rise further before cooling down. | | | | Ī | | Ī | Ī | | | | propane H H
C-C
C ₃ H ₈ H H | H H 21 | 28 | 28 Refinery gases do not cool down to their boiling point so remain as gases . | | | | | | | | | | | | | 21 | | | | | Alkane | | Alkene Alkene | Smaller Alka | ne (petrol fraction) | | | | | | Section 4: Cracking | | | | | | | | | | | | H H | | Cracking Method Process | | Temperature | | 31 C | 31 Cracking breaks down long-chain hydrocarbons to shorter | | | | | | butane . I | | 22 | 29 Catalytic Cracking Fraction is heated in the presence of a zeolite catalyst . 500°C. | | | | hydrocarbons and an alkene. The atoms in the products must be the same as the atoms in the reactants. | | | | | | | | | | | | 850°C. | | must be the same as the atoms in the reactants | | | • | | | | 11 1 | 1 11 11 | | | | | | | | | | | |