Topic: Sequences | Topic/Skill | Definition/Tips | Example | |------------------|---|---| | 1. Linear | A number pattern with a common | 2, 5, 8, 11 is a linear sequence | | Sequence | difference. | | | 2. Term | Each value in a sequence is called a term. | In the sequence 2, 5, 8, 11, 8 is the | | | | third term of the sequence. | | 3. Term-to- | A rule which allows you to find the next | First term is 2. Term-to-term rule is | | term rule | term in a sequence if you know the | 'add 3' | | term ruic | previous term. | add 3 | | | previous term. | Sequence is: 2, 5, 8, 11 | | 4. nth term | A rule which allows you to calculate the | nth term is $3n-1$ | | | term that is in the nth position of the | | | | sequence. | The 100^{th} term is $3 \times 100 - 1 = 299$ | | | | | | | Also known as the 'position-to-term' rule. | | | | | | | | n refers to the position of a term in a | | | 5. Finding the | sequence. 1. Find the difference . | Find the nth term of: 3, 7, 11, 15 | | nth term of a | 2. Multiply that by n. | 1 ind the fifth term of: 3, 7, 11, 13 | | linear | 3. Substitute $n = 1$ to find out what | 1. Difference is +4 | | sequence | number you need to add or subtract to | 2. Start with 4n | | | get the first number in the sequence. | $3.4 \times 1 = 4$, so we need to subtract 1 | | | | to get 3. | | | | nth term = 4n - 1 | | 6. Fibonacci | A sequence where the next number is found | The Fibonacci sequence is: | | type sequences | by adding up the previous two terms | 1,1,2,3,5,8,13,21,34 | | | | An average of a Fibonagai type | | | | An example of a Fibonacci-type sequence is: | | | | 4, 7, 11, 18, 29 | | 7. Geometric | A sequence of numbers where each term is | An example of a geometric sequence is: | | Sequence | found by multiplying the previous one by | 2, 10, 50, 250 | | 1 | a number called the common ratio , r . | The common ratio is 5 | | | | | | | | Another example of a geometric | | | | sequence is: | | | | 81, -27, 9, -3, 1 | | | | The common ratio is $-\frac{1}{3}$ | | 8. Quadratic | A sequence of numbers where the second | 2 6 12 20 30 42 | | Sequence | difference is constant. | +4 +6 +8 +10 +12 | | | | +2 +2 +2 +2 | | 0 1 | A quadratic sequence will have a n^2 term. | | | 9. nth term of a | ar^{n-1} | The nth term of 2, 10, 50, 250 Is | | geometric | where a is the first term and a is the | $2 \times 5^{n-1}$ | | sequence | where a is the first term and r is the common ratio | 2 × 5" = | | | Common rano | | | | | I | |-----------------|--|---| | 10. nth term of | 1. Find the first and second differences. | Find the nth term of: 4, 7, 14, 25, 40 | | a quadratic | 2. Halve the second difference and multiply | | | sequence | this by n^2 . | Answer: | | | 3. Substitute $n = 1,2,3,4$ into your | Second difference = $+4 \rightarrow$ nth term = | | | expression so far. | $2n^2$ | | | 4. Subtract this set of numbers from the | | | | corresponding terms in the sequence from | Sequence: 4, 7, 14, 25, 40 | | | the question. | $2n^2$ 2, 8, 18, 32, 50 | | | 5. Find the nth term of this set of numbers. | Difference: 2, -1, -4, -7, -10 | | | 6. Combine the nth terms to find the overall | , , , , | | | nth term of the quadratic sequence. | Nth term of this set of numbers is | | | 1 | -3n + 5 | | | Substitute values in to check your nth term | | | | works for the sequence. | Overall nth term: $2n^2 - 3n + 5$ | | | 1 | | | 11. Triangular | The sequence which comes from a pattern | 4 0 0 40 | | numbers | of dots that form a triangle. | 1 3 6 10 | | | | | | | 1, 3, 6, 10, 15, 21 | | | | _, _, _, _, _, _, | | | | | |